MinE-RFE: determine the optimal subset from RFE by minimizing the subset-accuracy–defined energy

摘要

Recursive feature elimination (RFE), as one of the most popular feature selection algorithms, has been extensively applied to bioinformatics. During the training, a group of candidate subsets are generated by iteratively eliminating the least important features from the original features. However, how to determine the optimal subset from them still remains ambiguous. Among most current studies, either overall accuracy or subset size (SS) is used to select the most predictive features. Using which one or both and how they affect the prediction performance are still open questions. In this study, we proposed MinE-RFE, a novel RFE-based feature selection approach by sufficiently considering the effect of both factors. Subset decision problem was ref lected into subset-accuracy space and became an energy-minimization problem.We also provided a mathematical description of the relationship between the overall accuracy and SS using Gaussian Mixture Models together with spline fitting. Besides, we comprehensively reviewed a variety of state-of-the-art applications in bioinformatics using RFE.We compared their approaches of deciding the final subset from all the candidate subsets with MinE-RFE on diverse bioinformatics data sets. Additionally, we also compared MinE-RFE with some well-used feature selection algorithms. The comparative results demonstrate that the proposed approach exhibits the best performance among all the approaches. To facilitate the use of MinE-RFE, we further established a user-friendly web server with the implementation of the proposed approach, which is accessible at http://qgking.wicp.net/MinE/.We expect this web server will be a useful tool for research community.

出版物
In Briefings in Bioinformatics